Data from CKAP2L Promotes Non–Small Cell Lung Cancer Progression through Regulation of Transcription Elongation

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non–small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC.

Significance:

These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要