Data from SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Androgen receptor splice variant-7 (AR-V7) is a constitutively active AR variant implicated in castration-resistant prostate cancers. Here, we show that the RNA splicing factor SF3B2, identified by in silico and CRISPR/Cas9 analyses, is a critical determinant of AR-V7 expression and is correlated with aggressive cancer phenotypes. Transcriptome and PAR-CLIP analyses revealed that SF3B2 controls the splicing of target genes, including AR, to drive aggressive phenotypes. SF3B2-mediated aggressive phenotypes in vivo were reversed by AR-V7 knockout. Pladienolide B, an inhibitor of a splicing modulator of the SF3b complex, suppressed the growth of tumors addicted to high SF3B2 expression. These findings support the idea that alteration of the splicing pattern by high SF3B2 expression is one mechanism underlying prostate cancer progression and therapeutic resistance. This study also provides evidence supporting SF3B2 as a candidate therapeutic target for treating patients with cancer.

Significance:

RNA splicing factor SF3B2 is essential for the generation of an androgen receptor (AR) variant that renders prostate cancer cells resistant to AR-targeting therapy.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要