Dual interface-reinforced built-in electric field for chlorine-free seawater oxidation

Applied Catalysis B: Environmental(2023)

引用 1|浏览0
暂无评分
摘要
It is imperative but challenging for the development of oxygen evolution reaction (OER) catalysts suitable for high-current density seawater electrolysis without detrimental chlorine chemistry. Herein, we report a (Ni, Fe)OOH@NixP heterogeneous catalyst comprising the (Ni, Fe)OOH/Ni12P5/Ni2P dual-interface, in which the Ni12P5/Ni2P interface can enhance intrinsic driving force to propel the interfacial electron transport and form a strong built-in electric field (BEF) with asymmetric charge distribution at the (Ni, Fe)OOH/Ni12P5 interface, simultaneously promoting the OER kinetics and weaking the Cl- adsorption ability. As a result, the (Ni, Fe)OOH@NixP catalyst requires ultralow overpotential of 318 mV to achieve the current density of 500 mAcm−2 with outstanding stability in alkaline seawater. Notably, almost no hypochlorite is detected in the lab-scale seawater electrolyzer even if the cell voltage exceeds 1.72 V for a long term. This work highlights a design principle for heterogeneous catalysts and makes an important step forward for industrial seawater electrolysis.
更多
查看译文
关键词
electric field,oxidation,interface-reinforced,chlorine-free
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要