Behavior of Influencing Parameters of the Fused Deposition Modeling Process in Dissimilar Combinations: Polymer-3D Printer

Applied Technologies(2023)

Cited 0|Views2
No score
Abstract
The proliferation of 3D printers and the availability of low-cost polymeric materials has allowed the Fused Deposition Modeling (FDM) process to expand its participation in the Additive Manufacturing (AM) market. In this work, the mechanical properties of typical polymers are characterized using two dissimilar material and FDM printer combinations, contrasting a low cost combination with a higher cost one. The modulus of elasticity and the tensile strength of acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) polymers are determined with standardized ASTM and ISO tests considering the effect of the infill density, layer thickness and filament color. It was mainly found that the increase in layer thickness generates appreciable reductions in the modulus of elasticity and tensile strength in the range of 12–17% considering the two polymers and that the influence of the filament color produces the widest range of variation, between 3% and 19% in the mechanical properties. In the previous ranges, the highest values correspond to PLA polymer and the lowest to ABS polymer, this may be due to the difference in quality of the polymers.
More
Translated text
Key words
fused deposition modeling process
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined