Full velocities and propagation directions of coronal mass ejections inferred from simultaneous full-disk imaging and Sun-as-a-star spectroscopic observations

ASTROPHYSICAL JOURNAL(2023)

引用 0|浏览18
暂无评分
摘要
Coronal mass ejections (CMEs) are violent ejections of magnetized plasma from the Sun, which can trigger geomagnetic storms, endanger satellite operations and destroy electrical infrastructures on the Earth. After systematically searching Sun-as-a-star spectra observed by the Extreme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) from May 2010 to May 2022, we identified eight CMEs associated with flares and filament eruptions by analyzing the blue-wing asymmetry of the O III 52.58 nm line profiles. Combined with images simultaneously taken by the 30.4 nm channel of the Atmospheric Imaging Assembly onboard SDO, the full velocity and propagation direction for each of the eight CMEs are derived. We find a strong correlation between geomagnetic indices (Kp and Dst) and the angle between the CME propagation direction and the Sun-Earth line, suggesting that Sun-as-a-star spectroscopic observations at EUV wavelengths can potentially help to improve the prediction accuracy of the geoeffectiveness of CMEs. Moreover, an analysis of synthesized long-exposure Sun-as-a-star spectra implies that it is possible to detect CMEs from other stars through blue-wing asymmetries or blueshifts of spectral lines.
更多
查看译文
关键词
coronal mass ejections
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要