Ultra-low complexity random forest for optical fiber communications

Chao LI,Yongjun Wang,Haipeng Yao,Leijing Yang, Inyu Liu, Ingyuan Huang, Iangjuan Xin

OPTICS EXPRESS(2023)

引用 1|浏览22
暂无评分
摘要
In this paper, we present an efficient equalizer based on random forest for channel equalization in optical fiber communication systems. The results are experimentally demonstrated in a 120 Gb/s, 375 km, dual-polarization 64-quadrature magnitude modulation (QAM) optical fiber communication platform. Based on the optimal parameters, we choose a series of deep learning algorithms for comparison. We find that random forest has the same level of equalization performance as deep neural networks as well as lower computational complexity. Moreover, we propose a two-step classification mechanism. We first divide the constellation points into two regions and then use different random forest equalizers to compensate the points in different regions. Based on this strategy, the system complexity and performance can be further reduced and improved. Furthermore, due to the plurality voting mechanism and two-stage classification strategy, the random forest-based equalizer can be applied to actual optical fiber communication systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要