Lifetime evaluation of thermally activated delayed fluorescence materials according to the positions of CN substituents

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 0|浏览2
暂无评分
摘要
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO), which has the advantages of high energy density, low cost, environmental friendliness, and being cobalt-free, is considered one of the most promising cathode materials for the next generation of power lithium-ion batteries. However, the side reaction at the interface between the LNMO cathode material and electrolyte usually causes a low specific capacity, poor rate, and poor cycling performance. In this work, we propose a facilitated method to build a well-tuned dual structure of LiF coating and F- doping LNMO cathode material via simple calcination of LNMO with LiF at low temperatures. The experimental results and DFT analysis demonstrated that the powerful interface protection due to the LiF coating and the higher lithium diffusion coefficient caused by F- doping effectively improved the electrochemical performance of LNMO. The optimized LNMO-1.3LiF cathode material presents a high discharge capacity of 140.3 mA h g-1 at 1 C and 118.7 mA h g-1 at 10 C. Furthermore, the capacity is retained at 75.4% after the 1000th cycle at 1 C. Our research provides a concrete guidance on how to effectively boost the electrochemical performance of LNMO cathode materials.
更多
查看译文
关键词
spinel cathode material, LiF coating, F- doping, electrolyte decomposition, DFT calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要