Observation of localized acoustic skyrmions

APPLIED PHYSICS LETTERS(2023)

引用 3|浏览7
暂无评分
摘要
Recently, acoustic skyrmions have been explored by tailoring velocity vectorial near-field distributions based on the interference of multiple spoof surface acoustic waves, providing new dimensions for advanced sound information processing, transport, and data storage. Here, we theoretically investigate and experimentally demonstrate that a deep-subwavelength spiral metastructure can also generate the acoustic skyrmion configuration. Analyzing the resonant response of the metastructure and observing the spatial profile of the velocity field, we find that the localized skyrmionic modes correspond to eigenmodes of the spiral structure. Thus, the skyrmionic modes do not require carefully tailored external excitation condition and they have multiple resonating frequencies unlike the single skyrmionic mode realized by the interference of multiple waves. We also demonstrate that the topological protected skyrmions supported by the subwavelength metastructure is robust against structure deformations and existence of structure defects. The real-space acoustic skyrmion topology may open new avenues for designing ultra-compact and robust acoustic devices, such as acoustic sensors, acoustic tweezers, and acoustic antennas.
更多
查看译文
关键词
acoustic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要