Excimer Energies.

The journal of physical chemistry letters(2023)

Cited 8|Views16
No score
Abstract
A multistate energy decomposition analysis (MS-EDA) method is introduced for excimers using density functional theory. Although EDA has been widely applied to intermolecular interactions in the ground state, few methods are currently available for excited-state complexes. Here, the total energy of an excimer state is separated into exciton excitation energy Δ(|Ψ·Ψ⟩*), resulting from the state interaction between locally excited monomer states |Ψ·Ψ⟩ and |Ψ·Ψ⟩ , a superexchange stabilization energy Δ, originating from the mutual charge transfer between two monomers |Ψ·Ψ⟩ and |Ψ·Ψ⟩ , and an orbital-and-configuration delocalization term Δ due to the expansion of configuration space and block-localized orbitals to the fully delocalized dimer system. Although there is no net charge transfer in symmetric excimer cases, the resonance of charge-transfer states is critical to stabilizing the excimer. The monomer localized excited and charge-transfer states are variationally optimized, forming a minimal active space for nonorthogonal state interaction (NOSI) calculations in multistate density functional theory to yield the intermediate states for energy analysis. The present MS-EDA method focuses on properties unique to excited states, providing insights into exciton coupling, superexchange and delocalization energies. MS-EDA is illustrated on the acetone and pentacene excimer systems; three configurations of the latter case are examined, including the optimized excimer, a stacked configuration of two pentacene molecules and the fishbone orientation. It is found that excited-state energy splitting is strongly dependent on the relative energies of the monomer excited states and the phase-matching of the monomer wave functions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined