Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer

SUSTAINABILITY(2023)

引用 7|浏览2
暂无评分
摘要
Changes in climatic circumstances, as well as intermittency, which has a significant impact on the overall energy system output from renewable energy sources (RESs), require the development of control strategies for extracting the maximum power available from RESs. To accomplish this task, several techniques have been developed. An efficient maximum power point tracking (MPPT) technique should be utilized to guarantee that both wind-generation and PV-generation systems provide their full advantages. In this paper, a new MPPT approach with jellyfish search optimization (JSO) is developed; in addition, a unified power-quality conditioner (UPQC) is utilized to enhance the performance of the microgrid (MG) and to solve the power-quality issues for the sensitive load. The MG, which includes a photovoltaic (PV), a wind turbine, and a fuel cell battery, is examined and modeled for uniform and nonuniform wind speed and solar irradiance. A comparison between the developed algorithm and different maximum power tracking algorithms is presented. Additionally, four case studies are carried out to verify the effectiveness of the introduced UPQC in enhancing power-quality problems. The research outcome shows high performance from the developed algorithm when assessed with additional algorithms. MATLAB/Simulink software is utilized for the simulation of the wind, PV, and FC control systems. However, experiment validation tests are given under the same condition of PV irradiation to validate the simulation results. The experimental validation is executed by utilizing the PV module simulation model, threefold, 23 V/2A CO3208-1A with solar altitude emulator CO3208-1B board, and the results are compared to the simulation results.
更多
查看译文
关键词
hybrid renewable sources,novel mppt,upqc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要