Chrome Extension
WeChat Mini Program
Use on ChatGLM

Bioleaching of zinc from e-waste by A. aquatilis in fluidised bed bioreactor

INDIAN CHEMICAL ENGINEER(2023)

Cited 1|Views1
No score
Abstract
Technological advancements with the use of new-generation electronic devices and accumulated electronic wastes (e-wastes) raise environmental concerns. E-waste, especially mobile phone Printed Circuit Boards (PCBs) is a rich source of metals. Bioleaching, a microbe-mediated metal dissolution process is employed for the recovery of metals. The operational parameters like particle size, inoculum percentage (v/v) and e-waste load (w/v) were optimised for Zn bioleaching by Alcaligenes aquatilis in shake flasks and fluidised bed bioreactor (FBR). The e-waste feed particle size of 0.175 mm and 5% inoculum was found to be the optimum for Zn bioleaching in both the shake flask and FBR. The optimum e-waste load was 5% in the shake flask and 2% in FBR. The maximum recovery of Zn was 0.6 mg/g (13.73%) in the shake flask and 0.57 mg/g (13%) in FBR, implying that FBR exhibits similar efficiency of Zn bioleaching as in the shake flask. Further three sequential batch runs increased the recovery to a maximum of 1.66 mg/g from 4.37 mg/g Zn present in the PCBs ie., 38% Zn recovery. This shows that efficient bioleaching of Zn on a larger scale can be achieved with sequential batches and applied for the simultaneous recovery of metals from PCBs.
More
Translated text
Key words
Zinc bioleaching, printed circuit boards, fluidised bed bioreactor, Alcaligenes aquatilis, electronic waste
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined