谷歌浏览器插件
订阅小程序
在清言上使用

Flying high: Sampling savanna vegetation with UAV-lidar

METHODS IN ECOLOGY AND EVOLUTION(2023)

引用 2|浏览18
暂无评分
摘要
The flexibility of UAV-lidar remote sensing offers a myriad of new opportunities for savanna ecology, enabling researchers to measure vegetation structure at a variety of temporal and spatial scales. However, this flexibility also increases the number of customizable variables, such as flight altitude, pattern, and sensor parameters, that, when adjusted, can impact data quality as well as the applicability of a dataset to a specific research interest.To better understand the impacts that UAV flight patterns and sensor parameters have on vegetation metrics, we compared 7 lidar point clouds collected with a Riegl VUX - 1LR over a 300 x 300 m area in the Kruger National Park, South Africa. We varied the altitude (60 m above ground, 100 m, 180 m, and 300 m) and sampling pattern (slowing the flight speed, increasing the overlap between flightlines and flying a crosshatch pattern), and compared a variety of vertical vegetation metrics related to height and fractional cover.Comparing vegetation metrics from acquisitions with different flight patterns and sensor parameters, we found that both flight altitude and pattern had significant impacts on derived structure metrics, with variation in altitude causing the largest impacts. Flying higher resulted in lower point cloud heights, leading to a consistent downward trend in percentile height metrics and fractional cover. The magnitude and direction of these trends also varied depending on the vegetation type sampled (trees, shrubs or grasses), showing that the structure and composition of savanna vegetation can interact with the lidar signal and alter derived metrics. While there were statistically significant differences in metrics among acquisitions, the average differences were often on the order of a few centimetres or less, which shows great promise for future comparison studies.We discuss how these results apply in practice, explaining the potential trade-offs of flying at higher altitudes and with alternate patterns. We highlight how flight and sensor parameters can be geared toward specific ecological applications and vegetation types, and we explore future opportunities for optimizing UAV-lidar sampling designs in savannas.
更多
查看译文
关键词
active remote sensing,canopy cover,canopy height,Kruger National Park,lidar,savanna,UAS,UAV,unoccupied aerial systems,unoccupied aerial vehicles,vegetation survey
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要