Photocatalytic degradation of sulfamethoxazole with Co-CuS@TiO2 heterostructures under solar light irradiation

CATALYSIS COMMUNICATIONS(2023)

引用 11|浏览10
暂无评分
摘要
This work describes a successful approach to dope copper sulfide with different amounts of Co2+ ions and combine it with TiO2 through a simple one-step hydrothermal process. Compared with the bare CuS, the syn-thesized Co-CuS@TiO2 heterostructures promote charge transport and restrict the recombination of photoexcited electrons and holes. The intrinsic properties of Co-CuS@TiO2 samples are systematically examined through experimental characterizations and density functional theory (DFT) theoretical calculations. Photocatalytic degradation tests under simulated solar light irradiation were performed using sulfamethoxazole degradation as a model emerging persistent antibiotic. The photocatalytic performance was enhanced after cobalt doping, and the heterostructure doped with 3% of Co exhibited the best degradation with an apparent rate constant of 0.0216 min-1. This sample also showed a much faster settling than bare TiO2, which indicates a much easier separation of the reaction media after being used. The enhancement of degradation is attributed to the increased light absorption and the more efficient charge transfer and separation. The plausible photocatalytic degradation mechanism of sulfamethoxazole was also proposed. This study presents a novel strategy to prepare potential photocatalysts for the elimination of emerging pollutants.
更多
查看译文
关键词
TiO2,CuS,Doping,Solar photocatalysis,Sulfamethoxazole,DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要