Chrome Extension
WeChat Mini Program
Use on ChatGLM

Liquid-liquid phase separation: Galectin-3 in nuclear speckles and ribonucleoprotein complexes

EXPERIMENTAL CELL RESEARCH(2023)

Cited 1|Views6
No score
Abstract
Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix pro-tein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing factors. Galectin-3 co-localizes with SC35 in nuclear speckles, which represent one group of nuclear bodies that include the nucleolus, Cajal bodies and gems, paraspeckles, etc. Although they appear to have well-delineated physical boundaries, these nuclear bodies are not membrane-bound structures but represent macromolecular assemblies arising from a phenomenon called liquid-liquid phase separation. There has been much recent interest in liquid phase condensation as a newly recognized mechanism by which a cell can organize and compartmentalize subcellular structures with distinct composition. The punctate/speckled staining of galectin-3 with SC3 demonstrates their co-localization in a phase-separated body in vivo, under conditions endogenous to the cell. The purpose of the present review is to summarize the studies that document three key features of galectin-3 for its localization in liquid phase condensates: (a) an intrinsically disordered domain; (b) oligomer formation for multivalent binding; and (c) association with RNA and ribonucleoprotein complexes.
More
Translated text
Key words
Intrinsically disordered domains,Liquid phase condensation,Membrane -less organelles,nuclear bodies
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined