Enhancing Antimicrobial Peptide Productivity in Pichia pastoris (Mut(s) Strain) by Improving the Fermentation Process Based on Increasing the Volumetric Methanol Consumption Rate

FERMENTATION-BASEL(2023)

引用 2|浏览1
暂无评分
摘要
The instability of the protein expression in Pichia pastoris strains has been an issue for various peptide productions. Some modifications to the traditional fermentation process could potentially solve the problem. Here, we consider a four-stage fermentation process to express the CAP2 (cell-penetrating antimicrobial peptide 2) candidate in P. pastoris KM71H, a slow methanol utilization strain. During the fermentation process, CAP2 productivity is limited (6.15 +/- 0.21 mg/L center dot h) by the low overall methanol consumption (approximately 645 g), which is mainly the result of the slow methanol utilization of the P. pastoris KM71H. To overcome this limitation, we increased the cell concentration two-fold prior to the induction stage. A fed-batch process with exponential and dissolved oxygen tension (DOT) stat feeding strategies was deployed to control the glycerol feed, resulting in an increase in cell concentration and enhancement of the volumetric methanol consumption rate. The improved fermentation process increased the overall methanol consumption (approximately 1070 g) and the CAP2 productivity (13.59 +/- 0.24 mg/L center dot h) by 1.66 and 2.21 times, respectively. In addition, the CAP3 (cell-penetrating antimicrobial peptide 3) candidate could also be produced using this improved fermentation process at a high yield of 3.96 +/- 0.02 g/L without any further optimization. Note that there was no oxygen limitation during the improved fermentation process operating at high cell density. This could be due to the controlled substrate addition via the DOT stat system.
更多
查看译文
关键词
Pichia pastoris,fermentation process,antimicrobial peptide,recombinant peptide,protein expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要