Beyond dark energy Fisher forecasts: How the Dark Energy Spectroscopic Instrument will constrain LCDM and quintessence models

PHYSICAL REVIEW D(2023)

Cited 2|Views16
No score
Abstract
We baseline with current cosmological observations to forecast the power of the Dark Energy Spectroscopic Instrument (DESI) in two ways: (1) the gain in constraining power of parameter combinations in the standard ACDM model, and (2) the reconstruction of quintessence models of dark energy. For the former task we use a recently developed formalism to extract the leading parameter combinations constrained by different combinations of cosmological survey data. For the latter, we perform a nonparametric reconstruction of quintessence using the effective field theory of dark energy. Using mock DESI observations of the Hubble parameter, angular diameter distance, and growth rate, we find that DESI will provide significant improvements over current datasets on ACDM and quintessence constraints. Including DESI mocks in our ACDM analysis improves constraints on SZm, H0, and sigma 8 by a factor of two, where the improvement results almost entirely from the angular diameter distance and growth of structure measurements. Our quintessence reconstruction suggests that DESI will considerably improve constraints on a range of quintessence properties, such as the reconstructed potential, scalar field excursion, and the dark energy equation of state. The angular diameter distance measurements are particularly constraining in the presence of a non-ACDM signal in which the potential cannot be accounted for by shifts in H0 and SZm.
More
Translated text
Key words
dark energy fisher forecasts,dark energy spectroscopic instrument,models
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined