Quantum simulation of the 1D Fermi-Hubbard model as a $\mathrm{Z}_2$ lattice-gauge theory

Uliana E. Khodaeva, Dmitry L. Kovrizhin,Johannes Knolle

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
The Fermi-Hubbard model is one of the central paradigms in the physics of strongly-correlated quantum many-body systems. Here we propose a quantum circuit algorithm based on the $\mathrm{Z}_2$ lattice gauge theory (LGT) representation of the one-dimensional Fermi-Hubbard model, which is suitable for implementation on current NISQ quantum computers. Within the LGT description there is an extensive number of local conserved quantities commuting with the Hamiltonian. We show how these conservation laws can be used to implement an efficient error-mitigation scheme. The latter is based on a post-selection of states for noisy quantum simulators. While the LGT description requires a deeper quantum-circuit compared to a Jordan-Wigner (JW) based approach, remarkably, we find that our error-correction protocol leads to results being on-par or even better than a standard JW implementation on noisy quantum simulators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要