Velocity field and cavity dynamics in drop impact experiments

Journal of fluid mechanics(2023)

引用 3|浏览4
暂无评分
摘要
Drop impact experiments allow the modelling of a wide variety of natural processes, from raindrop impacts to planetary impact craters. In particular, interpreting the consequences of planetary impacts requires an accurate description of the flow associated with the cratering process. In our experiments, we release a liquid drop above a deep liquid pool to investigate simultaneously the dynamics of the cavity and the velocity field produced around the air-liquid interface. Using particle image velocimetry, we analyse quantitatively the velocity field using a shifted Legendre polynomial decomposition. We show that the velocity field is more complex than considered in previous models, in relation to the non-hemispherical shape of the crater. In particular, the velocity field is dominated by degrees 0 and 1, with contributions from degree 2, and is independent of the Froude and the Weber numbers when these numbers are large enough. We then derive a semi-analytical model based on the Legendre polynomial expansion of an unsteady Bernoulli equation coupled with a kinematic boundary condition at the crater boundary. This model explains the experimental observations and can predict the time evolution of both the velocity field and the shape of the crater, including the initiation of the central jet.
更多
查看译文
关键词
drops
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要