A Hyperbolic Extension of Kadison-Singer Type Results.

CoRR(2023)

引用 0|浏览6
暂无评分
摘要
In 2013, Marcus, Spielman, and Srivastava resolved the famous Kadison-Singer conjecture. It states that for $n$ independent random vectors $v_1,\cdots, v_n$ that have expected squared norm bounded by $\epsilon$ and are in the isotropic position in expectation, there is a positive probability that the determinant polynomial $\det(xI - \sum_{i=1}^n v_iv_i^\top)$ has roots bounded by $(1 + \sqrt{\epsilon})^2$. An interpretation of the Kadison-Singer theorem is that we can always find a partition of the vectors $v_1,\cdots,v_n$ into two sets with a low discrepancy in terms of the spectral norm (in other words, rely on the determinant polynomial). In this paper, we provide two results for a broader class of polynomials, the hyperbolic polynomials. Furthermore, our results are in two generalized settings: $\bullet$ The first one shows that the Kadison-Singer result requires a weaker assumption that the vectors have a bounded sum of hyperbolic norms. $\bullet$ The second one relaxes the Kadison-Singer result's distribution assumption to the Strongly Rayleigh distribution. To the best of our knowledge, the previous results only support determinant polynomials [Anari and Oveis Gharan'14, Kyng, Luh and Song'20]. It is unclear whether they can be generalized to a broader class of polynomials. In addition, we also provide a sub-exponential time algorithm for constructing our results.
更多
查看译文
关键词
hyperbolic extension,kadison-singer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要