Quantum phase transition between symmetry enriched topological phases in tensor-network states

PHYSICAL REVIEW RESEARCH(2023)

引用 1|浏览14
暂无评分
摘要
Quantum phase transitions between different topologically ordered phases exhibit rich structures and are generically challenging to study in microscopic lattice models. In this paper, we propose a tensor-network solvable model that allows us to tune between different symmetry enriched topological (SET) phases. Concretely, we consider a decorated two-dimensional toric code model for which the ground state can be expressed as a two-dimensional tensor-network state with bond dimension D = 3 and two tunable parameters. We find that the time-reversal (TR) symmetric system exhibits three distinct phases: (i) an SET toric code phase in which anyons transform nontrivially under TR, (ii) a toric code phase in which TR does not fractionalize, and (iii) a topologically trivial phase that is adiabatically connected to a product state. We characterize the different phases using the topological entanglement entropy and a membrane order parameter that distinguishes the two SET phases. Along the phase boundary between the SET toric code phase and the toric code phase, the model has an enhanced U (1) symmetry and the ground state is a quantum critical loop gas wavefunction whose squared norm is equivalent to the partition function of the classical O(2) model. By duality transformations, this tensor-network solvable model can also be used to describe transitions between SET double-semion phases and between Z2 x ZT2 symmetry protected topological phases in two dimensions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要