Dissipative boundary state preparation

PHYSICAL REVIEW RESEARCH(2023)

引用 0|浏览10
暂无评分
摘要
We devise a generic and experimentally accessible recipe to prepare boundary states of topological or non topological quantum systems through an interplay between coherent Hamiltonian dynamics and local dissipation. Intuitively, our recipe harnesses the spatial structure of boundary states which vanish on sublattices where losses are suitably engineered. This yields unique nontrivial steady states that populate the targeted boundary states with infinite lifetimes while all other states are exponentially damped in time. Remarkably, applying loss only at one boundary can yield a unique steady state localized at the very same boundary. We detail our construction and rigorously derive full Liouvillian spectra and dissipative gaps in the presence of a spectral mirror symmetry for a one-dimensional Su-Schrieffer-Heeger model and a two-dimensional Chern insulator. We outline how our recipe extends to generic noninteracting systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要