A comparison between common marmosets (Callithrix jacchus) and human infants sheds light on traits proposed to be at the root of human octave equivalence.

Developmental science(2023)

引用 0|浏览5
暂无评分
摘要
Two notes separated by a doubling in frequency sound similar to humans. This "octave equivalence" is critical to perception and production of music and speech and occurs early in human development. Because it also occurs cross-culturally, a biological basis of octave equivalence has been hypothesized. Members of our team previousy suggested four human traits are at the root of this phenomenon: (1) vocal learning, (2) clear octave information in vocal harmonics, (3) differing vocal ranges, and (4) vocalizing together. Using cross-species studies, we can test how relevant these respective traits are, while controlling for enculturation effects and addressing questions of phylogeny. Common marmosets possess forms of three of the four traits, lacking differing vocal ranges. We tested 11 common marmosets by adapting an established head-turning paradigm, creating a parallel test to an important infant study. Unlike human infants, marmosets responded similarly to tones shifted by an octave or other intervals. Because previous studies with the same head-turning paradigm produced differential results to discernable acoustic stimuli in common marmosets, our results suggest that marmosets do not perceive octave equivalence. Our work suggests differing vocal ranges between adults and children and men and women and the way they are used in singing together may be critical to the development of octave equivalence. RESEARCH HIGHLIGHTS: A direct comparison of octave equivalence tests with common marmosets and human infants Marmosets show no octave equivalence Results emphasize the importance of differing vocal ranges between adults and infants.
更多
查看译文
关键词
common marmosets,comparative musicology,cross-species study,head turning,infants,octave equivalence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要