IDEFIX: a versatile performance-portable Godunov code for astrophysical flows

G. R. J. Lesur, S. Baghdadi, G. Wafflard-Fernandez, J. Mauxion, C. M. T. Robert,M. Van den Bossche

arXiv (Cornell University)(2023)

Cited 2|Views1
No score
Abstract
Exascale super-computers now becoming available rely on hybrid energy-efficient architectures that involve an accelerator such as Graphics Processing Units (GPU). Leveraging the computational power of these machines often means a significant rewrite of the numerical tools each time a new architecture becomes available. To address these issues, we present Idefix, a new code for astrophysical flows that relies on the Kokkos meta-programming library to guarantee performance portability on a wide variety of architectures while keeping the code as simple as possible for the user. Idefix is based on a Godunov finite-volume method that solves the non-relativistic HD and MHD equations on various grid geometries. Idefix includes a wide choice of solvers and several additional modules (constrained transport, orbital advection, non-ideal MHD) allowing users to address complex astrophysical problems. Idefix has been successfully tested on Intel and AMD CPUs (up to 131 072 CPU cores on Irene-Rome at TGCC) as well as NVidia and AMD GPUs (up to 1024 GPUs on Adastra at CINES). Idefix achieves more than 1e8 cell/s in MHD on a single NVidia V100 GPU and 3e11 cell/s on 256 Adastra nodes (1024 GPUs) with 95% parallelization efficiency (compared to a single node). For the same problem, Idefix is up to 6 times more energy efficient on GPUs compared to Intel Cascade Lake CPUs. Idefix is now a mature exascale-ready open-source code that can be used on a large variety of astrophysical and fluid dynamics applications.
More
Translated text
Key words
flows,performance-portable
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined