Quantize Sequential Recommenders Without Private Data

WWW 2023(2023)

引用 0|浏览32
暂无评分
摘要
Deep neural networks have achieved great success in sequential recommendation systems. While maintaining high competence in user modeling and next-item recommendation, these models have long been plagued by the numerous parameters and computation, which inhibit them to be deployed on resource-constrained mobile devices. Model quantization, as one of the main paradigms for compression techniques, converts float parameters to low-bit values to reduce parameter redundancy and accelerate inference. To avoid drastic performance degradation, it usually requests a fine-tuning phase with an original dataset. However, the training set of user-item interactions is not always available due to transmission limits or privacy concerns. In this paper, we propose a novel framework to quantize sequential recommenders without access to any real private data. A generator is employed in the framework to synthesize fake sequence samples to feed the quantized sequential recommendation model and minimize the gap with a full-precision sequential recommendation model. The generator and the quantized model are optimized with a min-max game — alternating discrepancy estimation and knowledge transfer. Moreover, we devise a two-level discrepancy modeling strategy to transfer information between the quantized model and the full-precision model. The extensive experiments of various recommendation networks on three public datasets demonstrate the effectiveness of the proposed framework.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要