Discovery of a bifunctional xylanolytic enzyme with arabinoxylan arabinofuranohydrolase-d3 and endo-xylanase activities and its application in the hydrolysis of cereal arabinoxylans.

Microbial biotechnology(2023)

引用 1|浏览14
暂无评分
摘要
Xylanolytic enzymes, with both endo-xylanase and arabinoxylan arabinofuranohydrolase (AXH) activities, are attractive for the economically feasible conversion of recalcitrant arabinoxylan. However, their characterization and utilization of these enzymes in biotechnological applications have been limited. Here, we characterize a novel bifunctional enzyme, rAbf43A, cloned from a bacterial consortium that exhibits AXH and endo-xylanase activities. Hydrolytic pattern analyses revealed that the AXH activity belongs to AXHd3 because it attacked only the C(O)-3-linked arabinofuranosyl residues of double-substituted xylopyranosyl units of arabinoxylan and arabinoxylan-derived oligosaccharides, which are usually resistant to hydrolysis. The enzyme rAbf43A also liberated a series of xylo-oligosaccharides (XOSs) from beechwood xylan, xylohexaose and xylopentaose, indicating that rAbf43A exhibited endo-xylanase activity. Homology modelling based on AlphaFold2 and site-directed mutagenesis identified three non-catalytic residues (H161, A270 and L505) located in the substrate-binding pocket essential for its dual-functionality, while the mutation of A117 located in the -1 subsite to the proline residue only affected its endo-xylanase activity. Additionally, rAbf43A showed significant synergistic action with the bifunctional xylanase/feruloyl esterase rXyn10A/Fae1A from the same bacterial consortium on insoluble wheat arabinoxylan and de-starched wheat bran degradation. When rXyn10A/Fae1A was added to the rAbf43A pre-hydrolyzed reactions, the amount of released reducing sugars, xylose and ferulic acid increased by 9.43% and 25.16%, 189.37% and 93.54%, 31.39% and 32.30%, respectively, in comparison with the sum of hydrolysis products released by each enzyme alone. The unique characteristics of rAbf43A position it as a promising candidate not only for designing high-performance enzyme cocktails but also for investigating the structure-function relationship of GH43 multifunctional enzymes.
更多
查看译文
关键词
bifunctional xylanolytic enzyme,hydrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要