Mid-IR quantum cascade laser spectroscopy to resolve lipid dynamics during the photocycle of bacteriorhodopsin

JOURNAL OF CHEMICAL PHYSICS(2023)

引用 0|浏览0
暂无评分
摘要
Membranes are crucial for the functionality of membrane proteins in several cellular processes. Time-resolved infrared (IR) spectroscopy enables the investigation of interaction-induced dynamics of the protein and the lipid membrane. The photoreceptor and proton pump bacteriorhodopsin (BR) was reconstituted into liposomes, mimicking the native purple membrane. By utilization of deuterated lipid alkyl chains, corresponding vibrational modes are frequency-shifted into a spectrally silent window that allows us to monitor lipid dynamics during the photoreaction of BR. Our home-built quantum cascade laser (QCL)-based IR spectrometer covers all relevant spectral regions to detect both lipid and protein vibrational modes. QCL-probed transients at single wavenumbers are compared with the previously performed step-scan Fourier-transform IR measurements. The absorbance changes of the lipids could be resolved by QCL-measurements with a much better signal-to-noise ratio and with nanosecond time resolution. We found a correlation of the lipid dynamics with the protonation dynamics in the M intermediate. QCL spectroscopy extends the study of the protein's photocycle toward dynamics of the interacting membrane.
更多
查看译文
关键词
lipid dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要