Codon affinity in mitochondrial DNA shapes evolutionary and somatic fitness

biorxiv(2023)

引用 0|浏览59
暂无评分
摘要
Somatic variation contributes to biological heterogeneity by modulating cellular proclivity to differentiate, expand, adapt, or die. While large-scale sequencing efforts have revealed the foundational role of somatic variants to drive human tumor evolution, our understanding of the contribution of mutations to modulate cellular fitness in non-malignant contexts remains understudied. Here, we identify a mosaic synonymous variant (m.7076A>G) in the mitochondrial DNA (mtDNA) encoded cytochrome c-oxidase subunit 1 gene ( MT-CO1 , p.Gly391=), which was present at homoplasmy in 47% of immune cells from a healthy donor. Using single-cell multi-omics, we discover highly specific selection against the m.7076G mutant allele in the CD8+ effector memory T cell compartment in vivo , reminiscent of selection observed for pathogenic mtDNA alleles[1][1], [2][2] and indicative of lineage-specific metabolic requirements. While the wildtype m.7076A allele is translated via Watson-Crick-Franklin base-pairing, the anticodon diversity of the mitochondrial transfer RNA pool is limited, requiring wobble-dependent translation of the m.7076G mutant allele. Notably, mitochondrial ribosome profiling revealed altered codon-anticodon affinity at the wobble position as evidenced by stalled translation of the synonymous m.7076G mutant allele encoding for glycine. Generalizing this observation, we provide a new ontogeny of the 8,482 synonymous variants in the human mitochondrial genome that enables interpretation of functional mtDNA variation. Specifically, via inter- and intra-species evolutionary analyses, population-level complex trait associations, and the occurrence of germline and somatic mtDNA mutations from large-scale sequencing studies, we demonstrate that synonymous variation impacting codon:anticodon affinity is actively evolving across the entire mitochondrial genome and has broad functional and phenotypic effects. In summary, our results introduce a new ontogeny for mitochondrial genetic variation and support a model where organismal principles can be discerned from somatic evolution via single-cell genomics. ### Competing Interest Statement Stanford University has filed a provisional patent based on this work where C.A.L. and A.T.S. are named inventors. A.T.S. is a founder of Immunai and Cartography Biosciences and receives research funding from Allogene Therapeutics and Merck Research Laboratories. C.A.L. and L.S.L. are consultants to Cartography Biosciences. [1]: #ref-1 [2]: #ref-2
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要