Resveratrol inhibits the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism lncRNAs.

The Journal of nutritional biochemistry(2023)

Cited 0|Views7
No score
Abstract
Resveratrol (RES) is one of the best-known bioactive polyphenols that has received much attention in recent years because of its importance to anti-obesity. However, the exact mechanism underlying this effect and whether it can improve lipid metabolism by regulating the long-chain non-coding RNA (lncRNA) remains unclear. In this study, twenty-four healthy crossbred castrated boars were fed a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. We founded that 400mg/kg and 600mg/kg RES-supplemented diet did not affect growth rate, but reduced significantly subcutaneous adipose thickness, carcass fat rate, greater dramatically the serum concentration of adiponectin and high-density lipoprotein in pigs. Further, we verified that RES could inhibit the formation and accumulation of lipid droplets by AdipoQ-AdipoR1-AMPKα and AdipoQ-AdipoR2-PPARα signal pathway in vivo and vitro (3T3-L1 preadipocytes). Transcriptome analyses founded that 5 differently expressed (DE) lncRNAs and 77 mRNAs in subcutaneous adipose between control group and 400 mg/kg RES group, which mainly involved in "adipocytokine signaling pathway", "Wnt signaling pathway", "PI3K-Akt signaling pathway" and "MAPK signaling pathway". In conclusion, RES can inhibit the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism-related lncRNAs. Our results provide a new insight on the molecular mechanism of RES as a nutritional agents to the prevention and treatment for obesity.
More
Translated text
Key words
AdipoQ,Resveratrol,lncRNAs,obesity,pig,subcutaneous adipose
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined