Kinetic study of calcium phosphate mineralisation in biomimetic conditions: An enzymatic model approach.

Colloids and surfaces. B, Biointerfaces(2023)

Cited 1|Views9
No score
Abstract
Although it has been studied for decades, calcium phosphate (CaP) biomineralisation remains an unclear process involving many possible pathways depending on subtle biological parameters that are hard to mimic. In this work, we explore the catalytic activity of enzymes to direct CaP crystallisation. This idea derives from the remarkable capacity of matrix vesicles (MVs) to control CaP biomineralisation in vivo by involving a variety of proteins, including enzymes. We highlight how the enzymatic control of the release of phosphate ions allows to better steer when and how the minerals form by tuning the enzymatic activity. We also illustrate how this enzymatic control enables the deeper understanding of the role of a crystallisation inhibitor, magnesium ions. Moreover, we propose in this study the original and extensive use of both dynamic (DLS) and static (SLS) light scattering measurements to follow the mineralisation in real-time and to provide kinetic quantitative parameters to describe this phenomenon. The combination of the techniques reveals noticeable differences in terms of nucleation and growth process between the two levers used in this approach: (i) adjusting the time evolution of the supersaturation or (ii) moderating the crystallisation process. This study allowed also to pinpoint specific intermediate structures, rarely seen and difficult to isolate, that differ when magnesium ions are introduced in the mixture.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined