Ultrasound resonance in coflowing immiscible liquids in a microchannel.

Physical review. E(2023)

Cited 1|Views1
No score
Abstract
We study ultrasonic resonance in a coflow system comprising a pair of immiscible liquids in a microchannel exposed to bulk acoustic waves. We show using an analytical model that there are two resonating frequencies corresponding to each of the coflowing liquids, which depend on the speed of sound and stream width of the liquid. We perform a frequency domain analysis using numerical simulations to reveal that resonance can be achieved by actuating both liquids at a single resonating frequency that depends on the speeds of sound, densities, and widths of the liquids. In a coflow system with equal speeds of sound and densities of the pair of fluids, the resonating frequency is found to be independent of the relative width of the two streams. In coflow systems with unequal speeds of sound or densities, even with matching characteristic acoustic impedances, the resonating frequency depends on the stream width ratio, and the value increases with an increase in the stream width of the liquid with a higher speed of sound. We show that a pressure nodal plane can be realized at the channel center by operating at a half-wave resonating frequency when the speeds of sound and densities are equal. However, the pressure nodal plane is found to shift away from the center of the microchannel when the speeds of sound and densities of the two liquids are unequal. The results of the model and simulations are verified experimentally via acoustic focusing of microparticles suggesting the formation of a pressure nodal plane and hence a resonance condition. Our study will find relevance in acoustomicrofluidics involving immiscible coflow systems.
More
Translated text
Key words
microchannel,immiscible liquids,ultrasound,resonance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined