EMGSense: A Low-Effort Self-Supervised Domain Adaptation Framework for EMG Sensing

2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)(2023)

引用 1|浏览15
暂无评分
摘要
This paper presents EMGSense, a low-effort self-supervised domain adaptation framework for sensing applications based on Electromyography (EMG). EMGSense addresses one of the fundamental challenges in EMG cross-user sensing—the significant performance degradation caused by time-varying biological heterogeneity—in a low-effort (data-efficient and label-free) manner. To alleviate the burden of data collection and avoid labor-intensive data annotation, we propose two EMG-specific data augmentation methods to simulate the EMG signals generated in various conditions and scope the exploration in label-free scenarios. We model combating biological heterogeneity-caused performance degradation as a multi-source domain adaptation problem that can learn from the diversity among source users to eliminate EMG heterogeneous biological features. To relearn the target-user-specific biological features from the unlabeled data, we integrate advanced self-supervised techniques into a carefully designed deep neural network (DNN) structure. The DNN structure can seamlessly perform two training stages that complement each other to adapt to a new user with satisfactory performance. Comprehensive evaluations on two sizable datasets collected from 13 participants indicate that EMGSense achieves an average accuracy of 91.9% and 81.2% in gesture recognition and activity recognition, respectively. EMGSense outperforms the state-of-the-art EMG-oriented domain adaptation approaches by 12.5%-17.4% and achieves a comparable performance with the one trained in a supervised learning manner.
更多
查看译文
关键词
EMG sensing,biological heterogeneity,domain adaptation,self-supervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要