Depletion of neurocan in the prefrontal cortex impairs temporal order recognition, cognitive flexibility and perisomatic GABAergic innervation

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览13
暂无评分
摘要
The condensed form of neural extracellular matrix (ECM), perineuronal nets (PNNs), is predominantly associated with parvalbumin-expressing (PV+) interneurons in the cortex and hippocampus. PNNs are enriched in several lecticans, including neurocan (Ncan). A polymorphism in the human Ncan gene has been associated with alterations in hippocampus-dependent memory function, variation of prefrontal cortex structure, and a higher risk for schizophrenia or bipolar disorder. Ncan knockout (KO) mice show related behavioral abnormalities, such as hyperactivity. Here we focused on studying how dysregulation of Ncan specifically in the mPFC may affect cognitive and synaptic functions. Intracortical adeno-associated virus (AAV) delivery was used to express shRNA against Ncan. Analysis of PNNs in Ncan shRNA-injected mice revealed a reduction in PNNs labelling by Wisteria floribunda agglutinin (WFA) around PV+ interneurons. Reduced Ncan expression resulted in a loss of the mPFC-dependent temporal order recognition and impairment of reversal spatial learning in a labyrinth (dry maze) task. As a potential synaptic substrate of these cognitive abnormalities, we report a robust reduction in the perisomatic GABAergic innervation of PV+ cells in Ncan KO and Ncan shRNA-injected mice. We also observed an increase in the density of vGLUT1-immunopositive synaptic puncta in the neuropil of Ncan shRNA-injected mice, which was, however, compensated in Ncan KO mice. Thus, our findings highlight a functional role of Ncan in supporting perisomatic GABAergic inhibition, temporal order recognition memory and cognitive flexibility, as one of the important cognitive resources depleted in neuropsychiatric disorders.
更多
查看译文
关键词
prefrontal cortex,neurocan,temporal order recognition,cognitive flexibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要