Multi-shell connectome DWI-based graph theory measures for the prediction of temporal lobe epilepsy and cognition.

Cerebral cortex (New York, N.Y. : 1991)(2023)

引用 0|浏览39
暂无评分
摘要
Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要