Regulation of NDVI and ET negative responses to increased atmospheric vapor pressure deficit by water availability in global drylands

Frontiers in Forests and Global Change(2023)

引用 0|浏览12
暂无评分
摘要
Atmospheric vapor pressure deficit (VPD, indicative of atmospheric water conditions) has been identified as a major driver of global vegetation dynamics. Drylands, including deserts, temperate grasslands, savannas, and dry forests, are more sensitive to water conditions and affect carbon, nitrogen, and water cycles. However, our knowledge is limited on the way increasing VPD affects vegetation growth and evapotranspiration (ET) in global drylands. In this study, we used long-term satellite datasets combined with multiple statistical analyses to examine the relationship between the satellite-derived normalized difference vegetation index (NDVI), a proxy for vegetation growth, and ET to VPD across global drylands. We found that significant decreases in NDVI and ET predominantly influenced the NDVI (RVPD − NDVI) and ET (RVPD − ET) responses to VPD in both the savannas and dry forests of South American, African, and Australian savannas and dry forests, as well as in temperate grasslands (e.g., Eurasian steppes and American prairies). Notably, more than 60% of global drylands exhibited significantly negative RVPD − NDVI and RVPD − ET values. In contrast, the percentage of significantly negative RVPD − NDVI and RVPD − ET decreased to <10% in cold drylands (>60° N). In predominantly warm drylands (60° N~60° S), negative VPD effects were significantly and positively regulated by soil water availability, as determined by multiple linear regression models. However, these significant regulatory effects were not observed in cold drylands. Moving-window analyses further revealed that temporal changes in RVPD − NDVI and RVPD − ET were positively correlated with changes in the Standardized Precipitation Evapotranspiration Index (SPEI). In warm drylands, areas with increasing RVPD − NDVI and RVPD − ET over time showed an increasing trend in the SPEI, whereas areas with a decreasing SPEI showed a negative trend in RVPD − NDVI and RVPD − ET values over time. Given the increasing atmospheric dryness due to climate change, this study highlighted the importance of re-evaluating the representation of the role of water availability in driving the response of the carbon-water cycle to increased VPD across global drylands.
更多
查看译文
关键词
vapor pressure deficit,NDVI,evapotranspiration,water availability,regulatory effects,global drylands
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要