BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair

Pei Xin Lim, Mahdia Zaman,Maria Jasin

Molecular Cell(2023)

引用 1|浏览7
暂无评分
摘要
Highlights eTOC blurb Lim et al . report that gap suppression as well as fork protection require BRCA2 stabilization of RAD51 filaments in human and mouse cells but have minimal impact on genome integrity, oncogenesis, and drug resistance. BRCA2 suppression of PRIMPOL-mediated replication gaps confers resistance to the nucleotide hmdU, incorporation of which leads to cytotoxic abasic sites.This effect is diminished when HDR is abrogated. Summary Tumor suppressor BRCA2 functions in homology-directed repair (HDR), protection of stalled replication forks, and suppression of replicative gaps. The relative contributions of these pathways to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for both fork protection and gap suppression, but not HDR. Loss of fork protection and gap suppression do not compromise genome instability or shorten tumor latency in mice or cause replication stress in human mammary cells. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection and gap suppression defects are also observed in Brca2 heterozygous mouse cells, likely due to reduced RAD51 stabilization at stalled forks and gaps. Gaps arise from PRIMPOL activity, which is associated with sensitivity to 5-hydroxymethyl-2’-deoxyuridine due to the formation of abasic sites by SMUG1 glycosylase and is exacerbated by poly(ADP-ribose) polymerase inhibition. However, HDR deficiency ultimately modulates sensitivity to chemotherapeutics, including PARP inhibitors. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要