Deletion of the first glycosylation site promotes Lassa virus glycoprotein-mediated membrane fusion.

Virologica Sinica(2023)

引用 0|浏览16
暂无评分
摘要
The Lassa virus (LASV) is endemic in West Africa and causes severe hemorrhagic Lassa fever in humans. The glycoprotein complex (GPC) of LASV is highly glycosylation-modified, with 11 ​N-glycosylation sites. All 11 N-linked glycan chains play critical roles in GPC cleavage, folding, receptor binding, membrane fusion, and immune evasion. In this study, we focused on the first glycosylation site because its deletion mutant (N79Q) results in an unexpected enhanced membrane fusion, whereas it exerts little effect on GPC expression, cleavage, and receptor binding. Meanwhile, the pseudotype virus bearing GPCN79Q was more sensitive to the neutralizing antibody 37.7H and was attenuated in virulence. Exploring the biological functions of the key glycosylation site on LASV GPC will help elucidate the mechanism of LASV infection and provide strategies for the development of attenuated vaccines against LASV infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要