Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles

Journal of the Indian Chemical Society(2023)

Cited 17|Views7
No score
Abstract
In the present work, silver-doped ZnO (Ag–ZnO NPs) with different concentrations of silver ions (0.3, 0.5, 1.0 and 1.5 mol %) were synthesized by using a simple co-precipitation method. The Ag–ZnO NPs were primarily characterized by XRD, FT-IR, SEM, EDS, TEM, UV–Vis. DRS, PL and BET surface area. The XRD analysis of Ag–ZnO NPs shows a wurtzite structure and optimized Ag–ZnO NPs (1.0 mol %) exhibit a lower crystallite size of 15.96 nm than that of bare ZnO (19.07 nm). Optical study shows a decrease in band gap from 3.13 to 2.97 eV as the concentration of Ag ions increases from 0.3 to 1.5 mol%. TEM images reveal the spherical shape particle with sizes ranging between 10 and 15 nm. From the multipoint BET plot, the surface area of Ag–ZnO NPs found 38.06 m2/gwhich is higher than the ZnO NPs (34.48 m2/g). The photocatalytic study demonstrated that the Ag–ZnO NPs (1.0 mol %) has an excellent photodegradation efficiency of Methyl Orange (96.74%)with a 26% increment as compared to bare ZnO (70.47%). Furthermore, the bactericidal activity of Ag–ZnO NPs (1.0 mol %) was investigated against four different bacterial strains. The results explored that the Gram-negative bacteria (E. coli and P. vulgaris) are more sensitive than Gram-positive (S. aureus and B. cereus) to Ag–ZnO NPs. Overall, the anticipated material is economical and reusable for photodegradation and antibacterial activity.
More
Translated text
Key words
Ag-ZnO NPs,Co-precipitation synthesis,Photocatalysis,Methyl orange
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined