CoSe2 nanoparticles anchored on CoNC carbon nanoplates as bifunctional electrocatalyst for flexible rechargeable Zn-air batteries

Journal of colloid and interface science(2023)

引用 4|浏览1
暂无评分
摘要
A flexible solid rechargeable Zn-air battery for advanced energy conversion and storage has extensive applications in portable electric sources, wildlife rescue and flexible wearable systems. Herein, the CoSe2 nanoparticles anchored on cobalt-embedded N-doping carbon nanoplates (CoSe2/CoNC) is developed as a highly active bifunctional catalyst via pyrolysis and selenization of bimetallic zeolitic imidazolate frameworks containing Zn and Co. The introduction of inactive Zn generates strong electrochemically active surface areas due to the synergistic effect between CoSe2 nanoparticles and CoNC matrix. Further, CoSe2/CoNC exhibits prominent Zn-air battery performance and even outperforms the commercially available noble-metal catalysts. Notably, a high-rate flexible Zn-air battery enabled by an alkaline composite polyacrylic acid-carboxymethyl cellulose electrolyte delivers the open-circuit potential of 1.51 V. The battery offers high wearability and performs very well under various conditions, such as soaking, drilling and sewing.
更多
查看译文
关键词
CoSe2 sites,N-doped carbon,Oxygen reduction reaction,Oxygen evolution reaction,Flexible rechargeable Zn-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要