Are low-velocity zones within the Tibetan crust the result of crustal melting from at least 28 Ma?

Lithos(2023)

引用 0|浏览4
暂无评分
摘要
Geophysically identified low-velocity zones (LVZs) are widespread within the Tibetan lower–middle crust, but their nature and role in models of the development of the Tibetan Plateau remain controversial. The debate stems mainly from whether the Tibetan crust was hydrous and has therefore undergone substantial melting. Here, we identify hydrous crustal xenoliths incorporated into 28 Ma syenite porphyries from central–northern Tibet. These xenoliths indicate the former existence of a cold (T = 680–790 °C) and water-rich (1.10–1.50 wt%) crustal end-member at a depth of 14–40 km in the Tibetan lower–middle crust. Our new petrological evidence indicates the LVZs are partially molten layers that have existed within the Tibetan crust since at least 28 Ma. High- to ultrahigh-temperature metamorphism since the Miocene is inferred to have triggered widespread melting of the former hydrous crust, which would have promoted the development of LVZs and resulted in a flat Tibet.
更多
查看译文
关键词
Crustal xenoliths,Low-velocity zones,Lower–middle crust,Crustal melting,Tibetan Plateau
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要