Chrome Extension
WeChat Mini Program
Use on ChatGLM

A low-cost multi-patient pressure-controlled ventilation system with individualized parameter settings

medRxiv (Cold Spring Harbor Laboratory)(2020)

Cited 0|Views3
No score
Abstract
AbstractIn a major health crisis, demand for mechanical ventilators may exceed supply. This scenario has led to the idea of connecting ventilation circuits in parallel to ventilate multiple patients simultaneously with the same machine. However, simple parallel connection may be harmful when the patients’ respiratory system mechanics differ. The aim of this work was to develop and test a low-cost, multi-patient, pressure-controlled ventilation system in which parameter settings could be individualized. Two types of circuits were built from polyvinyl chloride plumbing tubes and connectors, with ball valves and water columns used to control pressures. The circuits were connected to test lungs of differing compliances, ventilated in parallel at 20 cycles per minute and assessed for control error, variability and interdependency during peak inspiratory (20 to 35 cmH2O, in 5 cmH2O steps) and positive end-expiratory (5 to 20 to 5 cmH2O, in 5 cmH2O steps) pressure changes in one of the circuits. Results showed control errors lower than 1 cmH2O, a maximum standard deviation in pressure of 1.4 cmH2O and no dependency between the parallel circuits during the pressure maneuvers or a controlled disconnection/reconnection. This pressure-control system might be used to expand a commercial ventilator or, with constant gas inflow and an automated outlet valve, as a stand-alone ventilator with individually-controlled settings for multiple patients. In conclusion, the proposed solution is presented as a potentially reliable strategy for safely individualizing pressure-control parameters in a multi-patient ventilation system during a major health crisis.
More
Translated text
Key words
ventilation system,parameter,low-cost,multi-patient,pressure-controlled
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined