A genome wide association study of frozen shoulder identifies a common variant of WNT7B and diabetes as causal risk factors

medrxiv(2020)

Cited 0|Views11
No score
Abstract
Frozen shoulder is a painful condition that often requires surgery and affects up to 5% of individuals aged 40-60 years. Little is known about the causes of the condition, but diabetes is a strong risk factor. To begin to understand the biological mechanisms involved, we aimed to identify genetic variants associated with frozen shoulder and to use Mendelian randomization to test the causal role of diabetes. We performed a genome wide association study (GWAS) of frozen shoulder in the UK Biobank using data from 2064 cases identified from ICD-10 codes. We used data from FinnGen for replication. We used one-sample and two-sample Mendelian randomization approaches to test for a causal association of diabetes with frozen shoulder. We identified a single genome-wide significant locus (lead SNP rs62228062; OR=1.34 [1.28-1.41], p=2×10−16) that contained WNT7B . A recent transcriptome study identified WNT7B as amongst the most enriched transcripts in anterior capsule tissue in patients undergoing arthroscopic capsulotomy surgery for frozen shoulder suggesting WNT7B as a potential causal gene at the locus. The lead SNP was also strongly associated with Dupuytren’s contracture (OR=2.61 [2.50, 2.72], p<1×10−100). The Mendelian randomization results provided evidence that type 1 diabetes is a causal risk factor for frozen shoulder (OR=1.04 [1.02-1.07], p=6×10−5). There was no evidence that obesity was causally associated with frozen shoulder, suggesting that diabetes influences risk of the condition through glycemic rather than mechanical effects. We have identified the first genetic variant associated with frozen shoulder. WNT7B is a potential causal gene at the locus. Diabetes is a likely causal risk factor. Our results provide evidence of biological mechanisms involved in this common painful condition. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement HG was funded by an "Expanding excellence in England" award from Research England. TMF has received funding from the Medical Research Council, MR/T002239/1 and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 875534. This Joint Undertaking support from the European Union's Horizon 2020 research and innovation programme and EFPIA and T1D Exchange, JDRF, and Obesity Action Coalition. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: Ethical approval and participant consent were collected by UK Biobank at the time participants enrolled. This research has been conducted using the UK Biobank Resource under Application Number 68492. All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable. Yes This research has been conducted using the UK Biobank Resource (Application number: 68492).
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined