Exploring the Potential of Gaofen-1/6 for Crop Monitoring: Generating Daily Decametric-Resolution Leaf Area Index Time Series

IEEE Transactions on Geoscience and Remote Sensing(2023)

引用 1|浏览32
暂无评分
摘要
High spatiotemporal resolution time series of leaf area index (LAI) are essential for monitoring crop dynamics and validating coarse-resolution LAI products. The optical satellite sensors at decametric resolution have historically suffered from a long revisit cycle and cloud contamination issues that hampered the acquisition of frequent and high-quality observations. The 16-m/four-day resolution of the new-generation Gaofen-1 (GF-1) and Gaofen-6 (GF-6) satellites provide an unprecedented opportunity to address these limitations. Here, we developed an effective strategy to generate daily 16-m LAI maps combining GF-1/6 data and ground LAINet measurements. All high-quality GF-1/6 observations were utilized first to derive smoothed time series of vegetation indices (VIs). Second, a random forest regression (RF-r) model was trained to link the VIs with corresponding field LAI measurements. The trained RF-r was finally employed to generate the LAI maps. Results demonstrated the reliability of the reconstructed daily VIs (relative error (RE) < 1%) and the derived LAI time series, which greatly benefited from GF-1/6 high-frequency observations. The direct comparison with field LAI measurements by LAI-2200/LI-3000 showed the good performance of retrieved LAI maps, with bias, root mean square error (RMSE), and $R^{\mathbf {2}}$ of 0.05, 0.59, and 0.75, respectively. The LAI time series well captured the spatiotemporal variation of crop growth. Furthermore, the continuous GF-1/6 LAI maps outperformed Sentinel-2 LAI estimates both in terms of temporal frequency and accuracy. Our study indicates the potential of GF-1/6 to generate continuous decametric-resolution LAI maps for fine-scale agricultural monitoring.
更多
查看译文
关键词
Gaofen satellites,high spatiotemporal resolution,LAINet,leaf area index (LAI),time-series reconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要