Ginsenoside Rb1 Interfered with Macrophage Activation by Activating PPAR gamma to Inhibit Insulin Resistance in Obesity

Molecules(2023)

Cited 2|Views2
No score
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance (IR), often accompanied by inflammation. Macrophage activation acts as an inflammatory response, which is characterized by macrophage recruitment in the initial stage. Ginsenoside Rb1 (Rb1) is a main active ingredient, which is known for its fat-reducing, anti-inflammatory effects. To clarify that Rb1 regulates macrophage activation in adipose tissue and improves tissue inflammation, network pharmacology and molecular docking were used for target prediction and preliminary validation. By constructing the co-culture model of adipose-derived stem cells (ADSC) and primary macrophage (PM), the body adipose tissue microenvironment was simulated to observe the adipogenesis degree of adipocytes under the effect of Rb1. The levels of cytokines, macrophage polarization, and protein or RNA expression in the inflammatory signaling pathway were finally detected. The results showed that 89 common targets of T2D-Rb1 were obtained after their intersection. Furthermore, according to the results of the KEGG pathway and PPI analysis, PTGS2 (COX-2) is the downstream protein of PPAR gamma-NF-kappa B. The molecular binding energy of PPAR gamma-Rb1 is 6.8 kcal/mol. Rb1 significantly inhibited the increase in MCP-1, TNF-alpha, and IL-1 beta induced by hypertrophic adipocytes supernatant and promoted the expression of IL-10. Rb1 inhibited the activation of inflammatory macrophages and PM migration and upregulated PPAR gamma expression with the blocking of NF- kappa B activation. Additionally, Rb1 promoted the expression of IRS1 and PI3K in the insulin signal pathway, which had a similar effect with ROS. Therefore, Rb1 might affect macrophage activation through PPAR gamma, which might alleviate obese insulin resistance in T2D early stage.
More
Translated text
Key words
ginsenoside Rb1,insulin resistance,inflammation,PPARγ,network pharmacology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined