Chrome Extension
WeChat Mini Program
Use on ChatGLM

Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors

Nanomaterials(2023)

Cited 1|Views7
No score
Abstract
Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of ultraelastic polyacrylamide (PAAm)/(polyvinyl pyrrolidone) PVP/(calcium chloride) CaCl2 conductive hydrogels and surface-modified silicon rubber thin films. The significant enhancement of electrospun polyvinylidene fluoride (PVDF) nanofiber-modified hierarchically wrinkled micropyramidal architectures for the friction layer was studied. The mechanism of the enhanced output performance of the electrospun PVDF nanofibers and the single-side/double-side wrinkled micropyramidal architectures-based sensors has been discussed in detail. The as-prepared devices exhibited excellent sensitivity of a maximum of 20.1 V/N (or 8.03 V/kPa) as tactile sensors to recognize a wide range of forces from 0.1 N to 30 N at low frequencies. In addition, multiple human motion monitoring was demonstrated, such as knee, finger, wrist, and neck movement and voice recognition. This work shows great potential for skin-like epidermal electronics in long-term medical monitoring and intelligent robot applications.
More
Translated text
Key words
electrospun nanofibers,tactile sensors,hydrogels,stretchable
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined