Chrome Extension
WeChat Mini Program
Use on ChatGLM

Discrete Element Modeling of Thermally Damaged Sandstone Containing Two Pre-Existing Flaws at High Confining Pressure

Sustainability(2023)

Cited 0|Views11
No score
Abstract
An underground coal gasification (UCG) process is strongly exothermic, which will cause thermal damage on rock cap. We proposed a new thermal damage numerical model based on a two dimension particle flow code (PFC2D) to analyze the inception and extension of cracks on pre-cracked red sandstone, which were thermally treated at a temperature of 25~1000 °C. The results indicated that: (1) a thermal damage value DT obtained by extracting the thermal crack area of scanning electron microscope (SEM), which can be used as an indicator of the degree of thermal damage of the sandstone; (2) a thermal damage numerical model established by replacing the flat-joint model with the smooth-joint model based on the thermal damage value DT, this approach can properly simulate the mechanical behavior and failure patterns of sandstone; (3) the critical temperature for strength reduction was 750 °C. The peak strength increased as pre-treatment temperature increased from 25 to 750 °C and then decreased. The elastic modulus E1 decreased with the increasing thermal treatment temperature; (4) micro-scale cracks initiate from the tip of the prefabricated fissure, and expand along the direction of prefabricated fissure, finally developing into macroscopic fracture. This approach has the potential to enhance the predictive capability of modeling and presents a reliable model to simulate the mechanical behavior of thermally damaged sandstones, thereby offering a sound scientific basis for the utilization of space after UCG.
More
Translated text
Key words
sedimentary rocks,thermal cracks,strength,thermal damage,scanning electron microscope,PFC simulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined