Evaluation of SPI and Rainfall Departure Based on Multi-Satellite Precipitation Products for Meteorological Drought Monitoring in Tamil Nadu

Water(2023)

引用 3|浏览4
暂无评分
摘要
The prevalence of the frequent water stress conditions at present was found to be more frequent due to increased weather anomalies and climate change scenarios, among other reasons. Periodic drought assessment and subsequent management are essential in effectively utilizing and managing water resources. For effective drought monitoring/assessment, satellite-based precipitation products offer more reliable rainfall estimates with higher accuracy and spatial coverage than conventional rain gauge data. The present study on satellite-based drought monitoring and reliability evaluation was conducted using four high-resolution precipitation products, i.e., IMERGH, TRMM, CHIRPS, and PERSIANN, during the northeast monsoon season of 2015, 2016, and 2017 in the state of Tamil Nadu, India. These four precipitation products were evaluated for accuracy and confidence level by assessing the meteorological drought using standard precipitation index (SPI) and by comparing the results with automatic weather station (AWS) and rain gauge network data-derived SPI. Furthermore, considering the limited number of precipitation products available, the study also indirectly addressed the demanding need for high-resolution precipitation products with consistent temporal resolution. Among different products, IMERGH and TRMM rainfall estimates were found equipollent with the minimum range predictions, i.e., 149.8, 32.07, 80.05 mm and 144.31, 34.40, 75.01 mm, respectively, during NEM of 2015, 2016, and 2017. The rainfall data from CHIRPS were commensurable in the maximum range of 1564, 421, and 723 mm in these three consequent years (2015 to 2017) compared to AWS data. CHIRPS data recorded a higher per cent of agreement (>85%) compared to AWS data than other precipitation products in all the agro-climatic zones of Tamil Nadu. The SPI values were positive > 1.0 during 2015 and negative < −0.99 for 2016 and 2017, indicating normal/wet and dry conditions in the study area, respectively. This study highlighted discrepancies in the capability of the precipitation products IMERGH and TRMM estimates for low rainfall conditions and CHIRPS estimates in high rainfall regimes.
更多
查看译文
关键词
drought,precipitation products,rainfall estimates,standard precipitation index
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要