Halide perovskites for sensitive, stable and scalable X-ray detection and imaging.

Chemical communications (Cambridge, England)(2023)

引用 2|浏览6
暂无评分
摘要
Halide perovskites have attracted significant research interests in the X-ray detection and imaging field. Their strong X-ray attenuating ability and good carrier transportation endow them with high sensitivity, which is better than those of commercialized amorphous selenium (a-Se) and CdZnTe (CZT). However, ion migration has been identified as a critical factor that deteriorates the performance of three-dimensional (3D) lead-based halide perovskite detectors. Moreover, large dark current has hindered their application in low-dose X-ray detection. Another major challenge is to fabricate large area, high-quality thick perovskites that can be integrated with commercial electronic readout backplanes, such as thin-film transistors (TFTs) and complementary metal-oxide-semiconductor (CMOS) transistors, to produce multipixel flat-panel detectors for X-ray imaging. Bismuth-based halide perovskites have been demonstrated to be competitive candidates due to their low ionic migration and small dark current. Fabrication methods, including pressing, membrane filling, blade coating, spray coating , will be summarized and discussed in detail. This feature article discusses the potential and challenges in perovskite X-ray detection and imaging, providing new research directions for future development.
更多
查看译文
关键词
x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要