Chrome Extension
WeChat Mini Program
Use on ChatGLM

Extension of ELM suppression window using n=4 RMPs in EAST

NUCLEAR FUSION(2023)

Cited 0|Views59
No score
Abstract
The q95 window for Type-I Edge Localized Modes (ELMs) suppression using n=4 even parity Resonant Magnetic Perturbations (RMPs) has been significantly expanded to a range from 3.9 to 4.8, which is demonstrated to be reliable and repeatable in EAST over the last two years. This window is significantly wider than the previous one, which is around q95=3.7pm0.1, and is achieved using n=4 odd parity RMPs. Here, n represents the toroidal mode number of the applied RMPs and q95 is the safety factor at the 95% normalized poloidal magnetic flux. During ELM suppression, there is only a slight drop in the stored energy (<=10%). The comparison of pedestal density profiles suggests that ELM suppression is achieved when the pedestal gradient is kept lower than a threshold. This wide q95 window for ELM suppression is consistent with the prediction made by MARS-F modeling prior to the experiment, in which it is located at one of the resonant q95 windows for plasma response. The Chirikov parameter taking into account plasma response near the pedestal top, which measures the plasma edge stochasticity, significantly increases when q95 exceeds 4, mainly due to denser neighboring rational surfaces. Modeling of plasma response by the MARS-F code shows a strong coupling between resonant and non-resonant components across the pedestal region, which is characteristic of the kink-peeling like response observed during RMP-ELM suppression in previous studies on EAST. These promising results show the reliability of ELM suppression using the n=4 RMPs and expand the physical understanding on ELM suppression mechanism.
More
Translated text
Key words
ELM suppression, RMPs, tokamak, linear plasma response
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined