Fair Graph Message Passing with Transparency

ICLR 2023(2023)

引用 2|浏览54
暂无评分
摘要
Recent advanced works achieve fair representations and predictions through regularization, adversarial debiasing, and contrastive learning in graph neural networks (GNNs). These methods \textit{implicitly} encode the sensitive attribute information in the well-trained model weight via \textit{backward propagation}. In practice, we not only pursue a fair machine learning model but also lend such fairness perception to the public. For current fairness methods, how the sensitive attribute information usage makes the model achieve fair prediction still remains a black box. In this work, we first propose the concept \textit{transparency} to describe \textit{whether} the model embraces the ability of lending fairness perception to the public \textit{or not}. Motivated by the fact that current fairness models lack of transparency, we aim to pursue a fair machine learning model with transparency via \textit{explicitly} rendering sensitive attribute usage for fair prediction in \textit{forward propagation} . Specifically, we develop an effective and transparent \textsf{F}air \textsf{M}essage \textsf{P}assing (FMP) scheme adopting sensitive attribute information in forward propagation. In this way, FMP explicitly uncovers how sensitive attributes influence final prediction. Additionally, FMP scheme can aggregate useful information from neighbors and mitigate bias in a unified framework to simultaneously achieve graph smoothness and fairness objectives. An acceleration approach is also adopted to improve the efficiency of FMP. Experiments on node classification tasks demonstrate that the proposed FMP outperforms the state-of-the-art baselines in terms of fairness and accuracy on three real-world datasets. The code is available in {\color{blue}\url{https://anonymous.4open.science/r/FMP-AD84}}.
更多
查看译文
关键词
Fairness,Transparency,Graph Neural Networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要