Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models.

IEEE transactions on neural networks and learning systems(2023)

引用 2|浏览9
暂无评分
摘要
Interpolating between points is a problem connected simultaneously with finding geodesics and study of generative models. In the case of geodesics, we search for the curves with the shortest length, while in the case of generative models, we typically apply linear interpolation in the latent space. However, this interpolation uses implicitly the fact that Gaussian is unimodal. Thus, the problem of interpolating in the case when the latent density is non-Gaussian is an open problem. In this article, we present a general and unified approach to interpolation, which simultaneously allows us to search for geodesics and interpolating curves in latent space in the case of arbitrary density. Our results have a strong theoretical background based on the introduced quality measure of an interpolating curve. In particular, we show that maximizing the quality measure of the curve can be equivalently understood as a search of geodesic for a certain redefinition of the Riemannian metric on the space. We provide examples in three important cases. First, we show that our approach can be easily applied to finding geodesics on manifolds. Next, we focus our attention in finding interpolations in pretrained generative models. We show that our model effectively works in the case of arbitrary density. Moreover, we can interpolate in the subset of the space consisting of data possessing a given feature. The last case is focused on finding interpolation in the space of chemical compounds.
更多
查看译文
关键词
Computational and artificial intelligence,deep learning,machine learning,representation learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要